# Decision Tree

### Explaining Predictions: Interpretable models (decision tree)

Introduction This is a follow up post of using simple models to explain machine learning predictions. In the last post, we introduced logistic regression and in today’s entry we will learn about decision tree. We will continue to use the Cleveland heart dataset and use tidymodels principles where possible. The details of the Cleveland heart dataset was also described in the last post. #library library(tidyverse) library(tidymodels) #import heart<-read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed.cleveland.data", col_names = F) # Renaming var colnames(heart)<- c("age", "sex", "rest_cp", "rest_bp", "chol", "fast_bloodsugar","rest_ecg","ex_maxHR","ex_cp", "ex_STdepression_dur", "ex_STpeak","coloured_vessels", "thalassemia","heart_disease") #elaborating cat var ##simple ifelse conversion heart<-heart %>% mutate(sex= ifelse(sex=="1", "male", "female"),fast_bloodsugar= ifelse(fast_bloodsugar=="1", ">120", "<120"), ex_cp=ifelse(ex_cp=="1", "yes", "no"), heart_disease=ifelse(heart_disease=="0", "no", "yes")) ## complex ifelse conversion using `case_when` heart<-heart %>% mutate( rest_cp=case_when(rest_cp== "1" ~ "typical",rest_cp=="2" ~ "atypical", rest_cp== "3" ~ "non-CP pain",rest_cp== "4" ~ "asymptomatic"), rest_ecg=case_when(rest_ecg=="0" ~ "normal",rest_ecg=="1" ~ "ST-T abnorm",rest_ecg=="2" ~ "LV hyperthrophy"), ex_STpeak=case_when(ex_STpeak=="1" ~ "up/norm", ex_STpeak== "2" ~ "flat",ex_STpeak== "3" ~ "down"), thalassemia=case_when(thalassemia=="3.